

1.

				;	Subj	ject	Cod	e: K	ME	2501
Roll No:										

Printed Page: 1 of 2

BTECH (SEM V) THEORY EXAMINATION 2023-24 HEAT AND MASS TRANSFER

TIME: 3 HRS M.MARKS: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

Atten	opt <i>all</i> questions in brief.	0 = 20
Qno	Questions	CO
(a)	Discuss the effect of temperature on thermal conductivity of metals.	1
	Write SI unit of thermal conductivity.	
(b)	Discuss the concept of thermal resistance.	1
(c)	Define unsteady state heat conduction.	2
(d)	Define effectiveness of fin and efficiency of fin.	2
(e)	Differentiate between natural and forced convection.	3
(f)	Draw velocity boundary layer over a flat plate.	3
(g)	Describe any 4 rules used in determination of radiation shape factor.	4
(h)	Explain black body and gray body.	4
(i)	Define Fouling factor used in analysis of heat exchanger.	5
(j)	What are the various modes of mass transfer?	5

SECTION B

2.	Attempt any three of the following:	
----	-------------------------------------	--

TALLET	ipt any unce of the following.	2 00
(a)	Derive a general heat conduction equation for Cartesian (rectangular) coordinates	Ϋ́
(b)	State the assumptions made in Lumped Parametric analysis. For	2
	transient heat conduction, derive the following-	
	$\theta/\theta i = \exp(-Bi.Fo)$ where $\theta = T-T_a$	
(c)	Explain Reynolds analogy and colburn analogy. Obtain the expression	3
	for Nusselt Number for turbulent flow over flat plate using colburn	
	analogy.	
(d)	State and prove the reciprocity theorem used to determine shape factor.	4
(e)	Illustrate the following-	5
	i) Fick's Law of Mass diffusion	
	ii) Film-wise and drop-wise condensation.	

SECTION C

3. Attempt any *one* part of the following: 10x1=10

(a)	Derive the expression for critical radius of insulation for a cylinder.A10	1
	mm cable is to be laid in atmosphere of 20°c with outside heat transfer	
	coefficient 8.5 W/m ^{2o} C. The surface temperature is likely to be 65°C	
	due to heat generation. Will the rubber insulation (K=0.155W/m ² °C) be	
	effective? If yes, determine the maximum effective thickness of	
	insulation for maximum heat transfer rate.	
(b)	Obtain the expression for steady state one dimensional heat transfer	1
	rate without heat generation through a hollow cylinder. A stainless steel	
	rate without heat generation through a hollow cylinder. A stainless steel tube (Ks=19W/mK) of 2 cm internal diameter 5 cm outer diameter is	
	tube (Ks=19W/mK) of 2 cm internal diameter 5 cm outer diameter is	

4.

6.

7.

						Pri	ntec	l Pa	ge: 2	of 2
				,	Subj	ect	Cod	e: K	ME	501
Roll No:										

BTECH (SEM V) THEORY EXAMINATION 2023-24 HEAT AND MASS TRANSFER

TIME: 3 HRS M.MARKS: 100

Atter	npt any <i>one</i> part of the following: 10x1	=10
(a)	Derive the expression for temperature distribution for fin insulated at	2
	tip.	
(b)	The aluminium square fins (0.5 mm x 0.5 mm) of 10 mm length are provided on a surface of semiconductor device to carry 1 Watts of	
	energy generated by electronic device. The temperature at surface of device should not exceed 80°C, when surrounding temperature is 40Oc.	
	Determine the number of fins required to carry out this duty. Neglect	
	the heat loss room end of fins. K _{aluminium} = 200 W/m ^o C and h = 15 W/m ² oC	

5.	Atten	npt any <i>one</i> part of the following:	1=10
	(a)	Explain the following dimensionless numbers- Nusselt Number,	3
		Grashoff Number, Prandtl Number, and Stanton Number.	
	(b)	Estimate The coefficient of heat transfer from a vertical plate (height	3
		and width=2m x 2m) to the surrounding air at 25°C. The plate surface	. <
		temperature is 150°C, Also calculate the rate of heat transfer from the	
		plate. For air assume the kinematic viscosity as 16 X 10 ⁻⁶ m ² /s. The	0,0
		properties of air film temperature are density 0.972Kg/m ³	
		$C_p=1.0059KJ/KgK$, $K=3.13~W/mK$, $Pr=0.69$. The constant C and n in	
		Nusselt number are-0.15 and 1/3.	

Atter	npt any <i>one</i> part of the following:	=10
(a)	Two large plates at temperatures 1000 K and 500 K have emissivity of	4
	0.5 and 0.7 respectively. A radiation shield having emissivity 0.1 on	
	both sides is placed between the plates. Determine the percentage	
	reduction in heat transfer rate.	
(b)	Explain the following - Kirchhoff's Law of radiation, Steffan	4
	Boltzmann's law of radiation, absorptivity, reflectivity and	
	transmissibility of a surface.	

Atten	npt any <i>one</i> part of the following: 10x	1=10
(a)	Derive an expression for effectiveness of a heat exchanger by NTU	5
	method for parallel flow.	
(b)	i) Draw boiling curve and also name regimes of pool boiling.	5
	ii)A counter flow heat exchanger is used to cool 50000 Kg/hr of a	
	liquid from 65°C to 40°C using 40000 Kg/hr of water at 10°C	
	Determine the surface area of heat exchanger required.	
	Take $C_{p(liquid)} = 3700J/KgK$, $C_{p(water)} = 4180J/KgK$, Overall heat transfer	
	coefficient as 580 W/m ² K.	